A Survey of Data Mining Techniques for Improvement of Prediction Accuracy

Pallavi D. Bagul¹, Prof. K. C. Waghmare²
Student, Department of Computer Engineering, PICT Pune, India¹
Assistant Professor, Department of Computer Engineering, PICT Pune, India²

ABSTRACT: In today’s competitive world companies’ aim is to maintain their customers. The competition environment companies need to build their predictive models to identify their potential customer behaviors. Data mining techniques can be used to build the prediction model for companies because it can extract the predictive information from large databases. The accurate prediction helps in the growth of the industry. The prediction model is build by using Naive Bayes algorithm. But it is based on the independent assumptions between features. The objective of this research is to improve the accuracy of prediction by using Data mining algorithm with a Naive Bayes Classifier for better results. The proposed system is to improve the churn prediction accuracy by using data mining techniques.

KEYWORDS: Data Mining, Classification, Prediction, etc.

I. INTRODUCTION

The industry is dynamic and vibrant with large base customers. It faces a number of challenges in Data Mining because of the huge volume of data belonging to the companies. Companies use their data to make business decisions for the growth of industry and to analyze customer behavior. Before making any business decisions, business intelligence is necessary and important. Business intelligence (BI) is the set of techniques used for analyzing data and presenting actionable information. BI can predict trends, so companies need feasible BI to process their data and make decisions [1].

Churn is a term used in many companies which is mean loss of customers of the company for many reasons one of them the dissatisfaction of customer. In many companies churn term refers to customer’s decision to leave the current service provider and move to other service provider [9].

- **Telecommunication industry:** Telecommunication market is rapidly growing and highly competitive. It creates a demand for data mining in order to understand the business, identify the telecommunications patterns and improve the quality of service.

- **Retail Industry:** It is the major application area of data mining because to identify customer buying behavior, achieve good customer retention. Retails data mining can help identify customer buying behavior and achieve better customer retention and satisfaction.

- **Financial data analysis:** Financial data collected in the banking sector and financial industry are often relatively complete, reliable and of high quality which facilities systematic data analysis and data mining. Loan payment prediction and customer credit policy analysis [10].

Churn occurs easily because of the strong and speedy growing competition environment in services which are providing in various sector, also churn can be happen for another reasons for examples customer's dissatisfaction with services provided by company and high cost of these services which can be in another service provider with best quality and lower cost. So churn become a concern issue in that sector because retaining of existing customer is costly than acquiring new one. Hence the need of predicting such customer we have to build a model which will give accurate prediction about customer behavior. To improve the prediction accuracy some powerful Data mining techniques are used with the Naive Bayes classifier.
In the competitive world in many companies, customer churn is concern issue that for the retaining existing customers is higher cost than acquiring new customers, so the company predict the customers those are having high probability to churn and understand the reasons behind this churn and try to solve it.

II. RELATED WORK

Data mining techniques are used to build the prediction model. Different algorithm is needed for prediction of the different data set. That is for different application we need to consider different algorithm.

Naive Bayes Classifier is used to classify a business data set but result is not satisfactory. And then, they used association rule to decrease features by combining related attributes. The purpose to use Apriori Algorithm is to combine related attributes by its frequent item sets. Based on two result tables and the calculated proportions, the result met our expectations. The main purpose for our research is to reduce attributes by combining related attribute to fit the independent assumption in Naive Bayes Classifier [1].

K-means method is used to develop a model to find the relationship in a customer database. Cluster analysis (K-means) find the group of persons belongs which criteria. The customer data of LIC have taken for the experiment purpose. Only the age and few premium policy such as three policies are used for the analysis. Cluster analysis using K-means to find the distance between the three customers. K-means is suitable technique for cluster analysis. It may make a good bond between the customer and insurance policy organization. This method is to find the cluster (C1) have the 3 customers (S1,S2,S10) which satisfied with all the conditions of cluster same as the S1,S2,S10 then allocated the cluster C1. Cluster C2, C3 allocated as the cluster C1.It will leads to increase the profit percentage of an organization. Some Clustering optimization method is used to find the appropriate or local optimal solution [2].

Naive Bayes Classification algorithm for customer classification and prediction on Life Insurance of customers and used Naive Bayes classification for classifying the customers from the huge data set. It also examines the challenges of using data mining technology for predicting the customer behavior. They experimented with classification technique namely Naive Bayes Classification and Data collected from IRDA Data set of Life Insurance Corporation of India. In this paper, posterior classification process applied for the data. It clearly proved that the Naive Bayes classifier is much better than other classifier to perform the policy preferences towards the customers. This technique helps us to increase the revenue of the organization [5].

To improve the customer segmentation clustering algorithm RFM (Recency, Frequency, Monetary) values are used. Then the performance of the algorithm compared with other traditional techniques such as K-means, single link and complete link.RFM is one of the very effective method for customer segmentation. For segmenting the customers, the attribute R, F and M are used as three in clustering techniques. To find the distance between from each object to all other object, here Manhattan distance used and store it in distance matrix. The parallel merging of clusters pairs improves the quality of clustering algorithm. The performance of the clustering algorithms were measured in term of four criteria (MSE, Intra cluster distance, Inter Cluster distance, Intra cluster distance divided by the inter cluster distance [6].

A method to design retail promotions, informed by product associations observed in the same groups of customers. It used the Clustering and association rule find to identify customer behavior. It can be easily predict the sales. The customer with similar purchasing behavior are first grouped by means of clustering techniques such as K-means method and for each cluster an association rule such as Apriori algorithm to identify the products that are brought together by the customers. Analysis of customer behavior aims to improve the overall performance of the enterprise [7].

The two-stage hybrid models to combine unsupervised learning technique with supervised learning technique. It developed a model for the prediction of customer churn. The important decision is the separation of churners from non-churners in customer churn management. Decision tree model are very popular in prediction of churn. It used multiple variables for clustering and examines different hybrid approaches for utilizing the results of clustering in order to build supervised learning models for prediction of churn. In the hybrid method, clustering used as a first stage and decision tree used as a second stage. C5.0 decision tree models with boosting improved the performance of models in term of top decides lift. Three customers churn data set used in this paper [3].

The standard random forests approach is developed in effectively for predicting the customer churn. In this study, proposed a improved balanced random forests method (IBRF). The experimented were conducted with the help
of real bank customer churn data set. The data set extracted from the banks data warehouse. IBRF proved that better prediction results among the random forests such as weighted random forests and balanced random forests. The proposed method is the combination of the two random forests such as balanced random forest and weighted random forest. IBRF is better than that of SVM, ANN and DT. This method to be proven that better accuracy, faster training speeds [4].

The standard measure to improves marketing decision making. Bayesian network classifier used for slope estimation problem of customer life cycle. In this study, they tried to acknowledge the heterogeneity in the long life customer and it is proved that possible to predict that the slope of customer life cycle of long life customers. (TAN) Tree Augmented Naive Bayes Classifiers were presented extension of Naive Bayesian classifier. To measure the performance of classifier, the performance of correctly classified used [8].

III. APPROACHES OF CLUSTERING AND CLASSIFICATION

a) Clustering Approach: The clustering is the unsupervised learning algorithms.
 i. K-means: K-means clustering is an algorithm to classify or to group the different objects based on attributes or features into K number of group. Kcentroids are defined for K clusters which are generally far away from each other. Then the elements are grouped into clusters which are nearer to the centroid of that cluster. After this first step, again the newcentroid for each cluster is calculated based on the elements of that cluster. The same method is followed, and the element is grouped based on new centroid. In every step, the centroid changes and elements move from one cluster to another. The same process is followed till no element is moving from one cluster to another. i.e., until we get two consecutive same steps with the same centroid and the same elements [13].

b) Classification Approach: The classification is the supervised learning algorithms.
 i. Support Vector Machines: In machine learning, support vector machines are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples into one category or the other, making it a nonprobabilistic binary linear classifier. An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall on. In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using what is called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces.
 ii. Decision Tree: A decision tree is a decision support tool that has a flowchart like tree structure. It serves as a basis for several commercial rule induction systems. The decision tree is a structure that has an internal node which is also called as non-leaf node. It represents a test on an attribute. Each branch represents an outcome of the test. Each leaf node or terminal node holds a class label. The topmost node in the tree is the root node. Decision trees can produce binary trees as well as non-binary trees. Decision trees are widely used because they can easily be converted to classification rules.
 iii. Naive Bayes: The Naive Bayes’ classifier is based on Bayesian theorem with independence assumptions between predictors. This model is easy to build, with no complicated iterative parameter estimation which makes it particularly useful for very large datasets. Despite its simplicity, the Naive Bayesian classifier oftentimes performs surprisingly well and is widely used because it often outperforms more sophisticated classification methods. Bayes theorem provides a way of calculating the posterior probability, P(y|x), from P(y), P(x), and P(y|x). Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is independent of the values of other predictors. This assumption is called class conditional independence.

\[
P(C = c | X = x) = \frac{P(C = c) \Pi_{i} P(X_{i} | C = c)}{P(X = x)}
\]
P(c|x) is the posterior probability of class (target) given predictor (attribute).

P(c) is the prior probability of class.

P(x|c) is the likelihood which is the probability of predictor given class.

P(x) is the prior probability of predictor.

The posterior probability can be calculated by first, constructing a frequency table for each attribute against the target. Then, transforming the frequency tables to likelihood tables and finally use the NaiveBayesian equation to calculate the posterior probability for each class. The class with the highest posterior probability is the outcome of prediction [13].

IV. CONCLUSION

Customer churn is a big issue in many companies because it happen easily under light of strong competition in this business area, so the company need to build a churn prediction model that identify churner and non-churner customer and avoid the churn. The churn prediction accuracy is improved by using Data mining algorithm with Naive Bayes classifier algorithm. The result of the churn prediction model is more accurate than the result of Naive Bayes classifier.

ACKNOWLEDGEMENT

We sincerely thank our Dissertation Coordinator Dr. A. S. Ghotkar and Head of Department Dr. R. B. Ingle for their support providing all the help, motivation and encouragement for completion of this work.

REFERENCES

BIOGRAPHY

Pallavi D. Bagul is a Student, Department of Computer Engineering, Pune Institute of Computer Technology Pune. Her research interest in Data Mining.

Prof. K. C. Waghmare is a Assistant Professor of Department of Computer Engineering, Pune Institute of Computer Technology Pune. Her research interest in Data Mining, Data Structure and Design and analysis of algorithm.